This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffv3 | |- ( F ` A ) = ( iota x x e. ( F " { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv | |- ( F ` A ) = ( iota x A F x ) |
|
| 2 | elimasng | |- ( ( A e. _V /\ x e. _V ) -> ( x e. ( F " { A } ) <-> <. A , x >. e. F ) ) |
|
| 3 | df-br | |- ( A F x <-> <. A , x >. e. F ) |
|
| 4 | 2 3 | bitr4di | |- ( ( A e. _V /\ x e. _V ) -> ( x e. ( F " { A } ) <-> A F x ) ) |
| 5 | 4 | elvd | |- ( A e. _V -> ( x e. ( F " { A } ) <-> A F x ) ) |
| 6 | 5 | iotabidv | |- ( A e. _V -> ( iota x x e. ( F " { A } ) ) = ( iota x A F x ) ) |
| 7 | 1 6 | eqtr4id | |- ( A e. _V -> ( F ` A ) = ( iota x x e. ( F " { A } ) ) ) |
| 8 | fvprc | |- ( -. A e. _V -> ( F ` A ) = (/) ) |
|
| 9 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 10 | 9 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 11 | 10 | imaeq2d | |- ( -. A e. _V -> ( F " { A } ) = ( F " (/) ) ) |
| 12 | ima0 | |- ( F " (/) ) = (/) |
|
| 13 | 11 12 | eqtrdi | |- ( -. A e. _V -> ( F " { A } ) = (/) ) |
| 14 | 13 | eleq2d | |- ( -. A e. _V -> ( x e. ( F " { A } ) <-> x e. (/) ) ) |
| 15 | 14 | iotabidv | |- ( -. A e. _V -> ( iota x x e. ( F " { A } ) ) = ( iota x x e. (/) ) ) |
| 16 | noel | |- -. x e. (/) |
|
| 17 | 16 | nex | |- -. E. x x e. (/) |
| 18 | euex | |- ( E! x x e. (/) -> E. x x e. (/) ) |
|
| 19 | 17 18 | mto | |- -. E! x x e. (/) |
| 20 | iotanul | |- ( -. E! x x e. (/) -> ( iota x x e. (/) ) = (/) ) |
|
| 21 | 19 20 | ax-mp | |- ( iota x x e. (/) ) = (/) |
| 22 | 15 21 | eqtrdi | |- ( -. A e. _V -> ( iota x x e. ( F " { A } ) ) = (/) ) |
| 23 | 8 22 | eqtr4d | |- ( -. A e. _V -> ( F ` A ) = ( iota x x e. ( F " { A } ) ) ) |
| 24 | 7 23 | pm2.61i | |- ( F ` A ) = ( iota x x e. ( F " { A } ) ) |