This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) Avoid ax-10 , ax-11 , ax-12 , but use ax-8 . (Revised by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr2 | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fr | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. w e. x -. w R y ) ) |
|
| 2 | breq1 | |- ( z = w -> ( z R y <-> w R y ) ) |
|
| 3 | 2 | rabeq0w | |- ( { z e. x | z R y } = (/) <-> A. w e. x -. w R y ) |
| 4 | 3 | rexbii | |- ( E. y e. x { z e. x | z R y } = (/) <-> E. y e. x A. w e. x -. w R y ) |
| 5 | 4 | imbi2i | |- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. w e. x -. w R y ) ) |
| 6 | 5 | albii | |- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. w e. x -. w R y ) ) |
| 7 | 1 6 | bitr4i | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |