This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class form of isfin7-2 . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffin7-2 | ⊢ FinVII = ( Fin ∪ ( V ∖ dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor | ⊢ ( ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) ) | |
| 2 | isfin7-2 | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ FinVII ↔ ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 ∈ FinVII ↔ ( 𝑥 ∈ dom card → 𝑥 ∈ Fin ) ) |
| 4 | elun | ⊢ ( 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ↔ ( 𝑥 ∈ Fin ∨ 𝑥 ∈ ( V ∖ dom card ) ) ) | |
| 5 | orcom | ⊢ ( ( 𝑥 ∈ Fin ∨ 𝑥 ∈ ( V ∖ dom card ) ) ↔ ( 𝑥 ∈ ( V ∖ dom card ) ∨ 𝑥 ∈ Fin ) ) | |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ dom card ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card ) ) | |
| 8 | 6 7 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ dom card ) ↔ ¬ 𝑥 ∈ dom card ) |
| 9 | 8 | orbi1i | ⊢ ( ( 𝑥 ∈ ( V ∖ dom card ) ∨ 𝑥 ∈ Fin ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) ) |
| 10 | 4 5 9 | 3bitri | ⊢ ( 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ↔ ( ¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin ) ) |
| 11 | 1 3 10 | 3bitr4i | ⊢ ( 𝑥 ∈ FinVII ↔ 𝑥 ∈ ( Fin ∪ ( V ∖ dom card ) ) ) |
| 12 | 11 | eqriv | ⊢ FinVII = ( Fin ∪ ( V ∖ dom card ) ) |