This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class form of isfin7-2 . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffin7-2 | |- Fin7 = ( Fin u. ( _V \ dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor | |- ( ( x e. dom card -> x e. Fin ) <-> ( -. x e. dom card \/ x e. Fin ) ) |
|
| 2 | isfin7-2 | |- ( x e. _V -> ( x e. Fin7 <-> ( x e. dom card -> x e. Fin ) ) ) |
|
| 3 | 2 | elv | |- ( x e. Fin7 <-> ( x e. dom card -> x e. Fin ) ) |
| 4 | elun | |- ( x e. ( Fin u. ( _V \ dom card ) ) <-> ( x e. Fin \/ x e. ( _V \ dom card ) ) ) |
|
| 5 | orcom | |- ( ( x e. Fin \/ x e. ( _V \ dom card ) ) <-> ( x e. ( _V \ dom card ) \/ x e. Fin ) ) |
|
| 6 | vex | |- x e. _V |
|
| 7 | eldif | |- ( x e. ( _V \ dom card ) <-> ( x e. _V /\ -. x e. dom card ) ) |
|
| 8 | 6 7 | mpbiran | |- ( x e. ( _V \ dom card ) <-> -. x e. dom card ) |
| 9 | 8 | orbi1i | |- ( ( x e. ( _V \ dom card ) \/ x e. Fin ) <-> ( -. x e. dom card \/ x e. Fin ) ) |
| 10 | 4 5 9 | 3bitri | |- ( x e. ( Fin u. ( _V \ dom card ) ) <-> ( -. x e. dom card \/ x e. Fin ) ) |
| 11 | 1 3 10 | 3bitr4i | |- ( x e. Fin7 <-> x e. ( Fin u. ( _V \ dom card ) ) ) |
| 12 | 11 | eqriv | |- Fin7 = ( Fin u. ( _V \ dom card ) ) |