This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfacfin7 | ⊢ ( CHOICE ↔ FinVII = Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn2 | ⊢ ( ( V ∖ dom card ) ⊆ Fin ↔ ( Fin ∪ ( V ∖ dom card ) ) = Fin ) | |
| 2 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
| 3 | finnum | ⊢ ( 𝑥 ∈ Fin → 𝑥 ∈ dom card ) | |
| 4 | 3 | ssriv | ⊢ Fin ⊆ dom card |
| 5 | ssequn2 | ⊢ ( Fin ⊆ dom card ↔ ( dom card ∪ Fin ) = dom card ) | |
| 6 | 4 5 | mpbi | ⊢ ( dom card ∪ Fin ) = dom card |
| 7 | 6 | eqeq1i | ⊢ ( ( dom card ∪ Fin ) = V ↔ dom card = V ) |
| 8 | 2 7 | bitr4i | ⊢ ( CHOICE ↔ ( dom card ∪ Fin ) = V ) |
| 9 | ssv | ⊢ ( dom card ∪ Fin ) ⊆ V | |
| 10 | eqss | ⊢ ( ( dom card ∪ Fin ) = V ↔ ( ( dom card ∪ Fin ) ⊆ V ∧ V ⊆ ( dom card ∪ Fin ) ) ) | |
| 11 | 9 10 | mpbiran | ⊢ ( ( dom card ∪ Fin ) = V ↔ V ⊆ ( dom card ∪ Fin ) ) |
| 12 | ssundif | ⊢ ( V ⊆ ( dom card ∪ Fin ) ↔ ( V ∖ dom card ) ⊆ Fin ) | |
| 13 | 8 11 12 | 3bitri | ⊢ ( CHOICE ↔ ( V ∖ dom card ) ⊆ Fin ) |
| 14 | dffin7-2 | ⊢ FinVII = ( Fin ∪ ( V ∖ dom card ) ) | |
| 15 | 14 | eqeq1i | ⊢ ( FinVII = Fin ↔ ( Fin ∪ ( V ∖ dom card ) ) = Fin ) |
| 16 | 1 13 15 | 3bitr4i | ⊢ ( CHOICE ↔ FinVII = Fin ) |