This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeldisj5 | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeldisj4 | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) | |
| 2 | inecmo2 | ⊢ ( ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ∧ Rel ◡ E ) ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ∧ Rel ◡ E ) ) | |
| 3 | relcnv | ⊢ Rel ◡ E | |
| 4 | 3 | biantru | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ∧ Rel ◡ E ) ) |
| 5 | 3 | biantru | ⊢ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ∧ Rel ◡ E ) ) |
| 6 | 2 4 5 | 3bitr4i | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ) |
| 7 | eccnvep | ⊢ ( 𝑢 ∈ V → [ 𝑢 ] ◡ E = 𝑢 ) | |
| 8 | 7 | elv | ⊢ [ 𝑢 ] ◡ E = 𝑢 |
| 9 | eccnvep | ⊢ ( 𝑣 ∈ V → [ 𝑣 ] ◡ E = 𝑣 ) | |
| 10 | 9 | elv | ⊢ [ 𝑣 ] ◡ E = 𝑣 |
| 11 | 8 10 | ineq12i | ⊢ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ( 𝑢 ∩ 𝑣 ) |
| 12 | 11 | eqeq1i | ⊢ ( ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ↔ ( 𝑢 ∩ 𝑣 ) = ∅ ) |
| 13 | 12 | orbi2i | ⊢ ( ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 14 | 13 | 2ralbii | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] ◡ E ∩ [ 𝑣 ] ◡ E ) = ∅ ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 15 | brcnvep | ⊢ ( 𝑢 ∈ V → ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) ) | |
| 16 | 15 | elv | ⊢ ( 𝑢 ◡ E 𝑥 ↔ 𝑥 ∈ 𝑢 ) |
| 17 | 16 | rmobii | ⊢ ( ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ↔ ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
| 18 | 17 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 ◡ E 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
| 19 | 6 14 18 | 3bitr3i | ⊢ ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
| 20 | 1 19 | bitr4i | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |