This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeldisj5 | |- ( ElDisj A <-> A. u e. A A. v e. A ( u = v \/ ( u i^i v ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeldisj4 | |- ( ElDisj A <-> A. x E* u e. A x e. u ) |
|
| 2 | inecmo2 | |- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) /\ Rel `' _E ) <-> ( A. x E* u e. A u `' _E x /\ Rel `' _E ) ) |
|
| 3 | relcnv | |- Rel `' _E |
|
| 4 | 3 | biantru | |- ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) /\ Rel `' _E ) ) |
| 5 | 3 | biantru | |- ( A. x E* u e. A u `' _E x <-> ( A. x E* u e. A u `' _E x /\ Rel `' _E ) ) |
| 6 | 2 4 5 | 3bitr4i | |- ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> A. x E* u e. A u `' _E x ) |
| 7 | eccnvep | |- ( u e. _V -> [ u ] `' _E = u ) |
|
| 8 | 7 | elv | |- [ u ] `' _E = u |
| 9 | eccnvep | |- ( v e. _V -> [ v ] `' _E = v ) |
|
| 10 | 9 | elv | |- [ v ] `' _E = v |
| 11 | 8 10 | ineq12i | |- ( [ u ] `' _E i^i [ v ] `' _E ) = ( u i^i v ) |
| 12 | 11 | eqeq1i | |- ( ( [ u ] `' _E i^i [ v ] `' _E ) = (/) <-> ( u i^i v ) = (/) ) |
| 13 | 12 | orbi2i | |- ( ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> ( u = v \/ ( u i^i v ) = (/) ) ) |
| 14 | 13 | 2ralbii | |- ( A. u e. A A. v e. A ( u = v \/ ( [ u ] `' _E i^i [ v ] `' _E ) = (/) ) <-> A. u e. A A. v e. A ( u = v \/ ( u i^i v ) = (/) ) ) |
| 15 | brcnvep | |- ( u e. _V -> ( u `' _E x <-> x e. u ) ) |
|
| 16 | 15 | elv | |- ( u `' _E x <-> x e. u ) |
| 17 | 16 | rmobii | |- ( E* u e. A u `' _E x <-> E* u e. A x e. u ) |
| 18 | 17 | albii | |- ( A. x E* u e. A u `' _E x <-> A. x E* u e. A x e. u ) |
| 19 | 6 14 18 | 3bitr3i | |- ( A. u e. A A. v e. A ( u = v \/ ( u i^i v ) = (/) ) <-> A. x E* u e. A x e. u ) |
| 20 | 1 19 | bitr4i | |- ( ElDisj A <-> A. u e. A A. v e. A ( u = v \/ ( u i^i v ) = (/) ) ) |