This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeldisj4 | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
| 2 | relres | ⊢ Rel ( ◡ E ↾ 𝐴 ) | |
| 3 | dfdisjALTV4 | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ∧ Rel ( ◡ E ↾ 𝐴 ) ) ) | |
| 4 | 2 3 | mpbiran2 | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) ↔ ∀ 𝑥 ∃* 𝑢 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ) |
| 5 | brcnvepres | ⊢ ( ( 𝑢 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) ) | |
| 6 | 5 | el2v | ⊢ ( 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) |
| 7 | 6 | mobii | ⊢ ( ∃* 𝑢 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ∃* 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) |
| 8 | df-rmo | ⊢ ( ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ↔ ∃* 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ∃* 𝑢 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑢 𝑢 ( ◡ E ↾ 𝐴 ) 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
| 11 | 1 4 10 | 3bitri | ⊢ ( ElDisj 𝐴 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |