This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of TakeutiZaring p. 79. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankval3.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankval3 | ⊢ ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankval3.1 | ⊢ 𝐴 ∈ V | |
| 2 | unir1 | ⊢ ∪ ( 𝑅1 “ On ) = V | |
| 3 | 1 2 | eleqtrri | ⊢ 𝐴 ∈ ∪ ( 𝑅1 “ On ) |
| 4 | rankval3b | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } ) | |
| 5 | 3 4 | ax-mp | ⊢ ( rank ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ∈ 𝑥 } |