This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) / ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐶 ∈ ℂ → - 𝐶 ∈ ℂ ) | |
| 2 | cxpadd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ - 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) ) | |
| 3 | 1 2 | syl3an3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) ) |
| 4 | simp2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 6 | 4 5 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 7 | 6 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐶 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 − 𝐶 ) ) ) |
| 8 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 9 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ≠ 0 ) | |
| 10 | cxpneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐶 ) = ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) | |
| 11 | 8 9 5 10 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐶 ) = ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
| 13 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) | |
| 14 | 8 4 13 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
| 15 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) | |
| 16 | 8 5 15 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 17 | cxpne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ≠ 0 ) | |
| 18 | 8 9 5 17 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) ≠ 0 ) |
| 19 | 14 16 18 | divrecd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) / ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 1 / ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
| 20 | 12 19 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) / ( 𝐴 ↑𝑐 𝐶 ) ) ) |
| 21 | 3 7 20 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) / ( 𝐴 ↑𝑐 𝐶 ) ) ) |