This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpsub | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B - C ) ) = ( ( A ^c B ) / ( A ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( C e. CC -> -u C e. CC ) |
|
| 2 | cxpadd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ -u C e. CC ) -> ( A ^c ( B + -u C ) ) = ( ( A ^c B ) x. ( A ^c -u C ) ) ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + -u C ) ) = ( ( A ^c B ) x. ( A ^c -u C ) ) ) |
| 4 | simp2 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 5 | simp3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 6 | 4 5 | negsubd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( B + -u C ) = ( B - C ) ) |
| 7 | 6 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B + -u C ) ) = ( A ^c ( B - C ) ) ) |
| 8 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 9 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> A =/= 0 ) |
|
| 10 | cxpneg | |- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c -u C ) = ( 1 / ( A ^c C ) ) ) |
|
| 11 | 8 9 5 10 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c -u C ) = ( 1 / ( A ^c C ) ) ) |
| 12 | 11 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( A ^c B ) x. ( A ^c -u C ) ) = ( ( A ^c B ) x. ( 1 / ( A ^c C ) ) ) ) |
| 13 | cxpcl | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
|
| 14 | 8 4 13 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c B ) e. CC ) |
| 15 | cxpcl | |- ( ( A e. CC /\ C e. CC ) -> ( A ^c C ) e. CC ) |
|
| 16 | 8 5 15 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c C ) e. CC ) |
| 17 | cxpne0 | |- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) =/= 0 ) |
|
| 18 | 8 9 5 17 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c C ) =/= 0 ) |
| 19 | 14 16 18 | divrecd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( A ^c B ) / ( A ^c C ) ) = ( ( A ^c B ) x. ( 1 / ( A ^c C ) ) ) ) |
| 20 | 12 19 | eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( ( A ^c B ) x. ( A ^c -u C ) ) = ( ( A ^c B ) / ( A ^c C ) ) ) |
| 21 | 3 7 20 | 3eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ C e. CC ) -> ( A ^c ( B - C ) ) = ( ( A ^c B ) / ( A ^c C ) ) ) |