This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rplogcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 2 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) | |
| 3 | 1red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) | |
| 4 | 0lt1 | ⊢ 0 < 1 | |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 1 ) |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) | |
| 7 | 2 3 1 5 6 | lttrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 8 | 1 7 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 9 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 11 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 12 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 13 | logltb | ⊢ ( ( 1 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 1 < 𝐴 ↔ ( log ‘ 1 ) < ( log ‘ 𝐴 ) ) ) | |
| 14 | 12 8 13 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 < 𝐴 ↔ ( log ‘ 1 ) < ( log ‘ 𝐴 ) ) ) |
| 15 | 6 14 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 1 ) < ( log ‘ 𝐴 ) ) |
| 16 | 11 15 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < ( log ‘ 𝐴 ) ) |
| 17 | 10 16 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |