This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logcxp | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 3 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≠ 0 ) |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 6 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 7 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 8 | 2 4 6 7 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 10 | id | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ ) | |
| 11 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 12 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) | |
| 13 | 10 11 12 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 14 | 13 | relogefd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| 15 | 9 14 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |