This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The covers relation implies no in-betweenness. ( cvnbtwn2 analog.) (Contributed by NM, 17-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrletr.b | |- B = ( Base ` K ) |
|
| cvrletr.l | |- .<_ = ( le ` K ) |
||
| cvrletr.s | |- .< = ( lt ` K ) |
||
| cvrletr.c | |- C = ( |
||
| Assertion | cvrnbtwn2 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .< Z /\ Z .<_ Y ) <-> Z = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrletr.b | |- B = ( Base ` K ) |
|
| 2 | cvrletr.l | |- .<_ = ( le ` K ) |
|
| 3 | cvrletr.s | |- .< = ( lt ` K ) |
|
| 4 | cvrletr.c | |- C = ( |
|
| 5 | 1 3 4 | cvrnbtwn | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> -. ( X .< Z /\ Z .< Y ) ) |
| 6 | 5 | 3expia | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y -> -. ( X .< Z /\ Z .< Y ) ) ) |
| 7 | iman | |- ( ( ( X .< Z /\ Z .<_ Y ) -> Z = Y ) <-> -. ( ( X .< Z /\ Z .<_ Y ) /\ -. Z = Y ) ) |
|
| 8 | anass | |- ( ( ( X .< Z /\ Z .<_ Y ) /\ -. Z = Y ) <-> ( X .< Z /\ ( Z .<_ Y /\ -. Z = Y ) ) ) |
|
| 9 | simpl | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Poset ) |
|
| 10 | simpr3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 11 | simpr2 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 12 | 2 3 | pltval | |- ( ( K e. Poset /\ Z e. B /\ Y e. B ) -> ( Z .< Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
| 13 | 9 10 11 12 | syl3anc | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z .< Y <-> ( Z .<_ Y /\ Z =/= Y ) ) ) |
| 14 | df-ne | |- ( Z =/= Y <-> -. Z = Y ) |
|
| 15 | 14 | anbi2i | |- ( ( Z .<_ Y /\ Z =/= Y ) <-> ( Z .<_ Y /\ -. Z = Y ) ) |
| 16 | 13 15 | bitrdi | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z .< Y <-> ( Z .<_ Y /\ -. Z = Y ) ) ) |
| 17 | 16 | anbi2d | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Z /\ Z .< Y ) <-> ( X .< Z /\ ( Z .<_ Y /\ -. Z = Y ) ) ) ) |
| 18 | 8 17 | bitr4id | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X .< Z /\ Z .<_ Y ) /\ -. Z = Y ) <-> ( X .< Z /\ Z .< Y ) ) ) |
| 19 | 18 | notbid | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. ( ( X .< Z /\ Z .<_ Y ) /\ -. Z = Y ) <-> -. ( X .< Z /\ Z .< Y ) ) ) |
| 20 | 7 19 | bitr2id | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. ( X .< Z /\ Z .< Y ) <-> ( ( X .< Z /\ Z .<_ Y ) -> Z = Y ) ) ) |
| 21 | 6 20 | sylibd | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y -> ( ( X .< Z /\ Z .<_ Y ) -> Z = Y ) ) ) |
| 22 | 21 | 3impia | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .< Z /\ Z .<_ Y ) -> Z = Y ) ) |
| 23 | 1 3 4 | cvrlt | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X C Y ) -> X .< Y ) |
| 24 | 23 | ex | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X C Y -> X .< Y ) ) |
| 25 | 24 | 3adant3r3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y -> X .< Y ) ) |
| 26 | 25 | 3impia | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> X .< Y ) |
| 27 | breq2 | |- ( Z = Y -> ( X .< Z <-> X .< Y ) ) |
|
| 28 | 26 27 | syl5ibrcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( Z = Y -> X .< Z ) ) |
| 29 | 1 2 | posref | |- ( ( K e. Poset /\ Y e. B ) -> Y .<_ Y ) |
| 30 | 29 | 3ad2antr2 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y .<_ Y ) |
| 31 | breq1 | |- ( Z = Y -> ( Z .<_ Y <-> Y .<_ Y ) ) |
|
| 32 | 30 31 | syl5ibrcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Z = Y -> Z .<_ Y ) ) |
| 33 | 32 | 3adant3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( Z = Y -> Z .<_ Y ) ) |
| 34 | 28 33 | jcad | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( Z = Y -> ( X .< Z /\ Z .<_ Y ) ) ) |
| 35 | 22 34 | impbid | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X C Y ) -> ( ( X .< Z /\ Z .<_ Y ) <-> Z = Y ) ) |