This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvnbtwn4 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvnbtwn | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A |
|
| 2 | iman | |- ( ( ( A C_ C /\ C C_ B ) -> ( C = A \/ C = B ) ) <-> -. ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) ) |
|
| 3 | an4 | |- ( ( ( A C_ C /\ C C_ B ) /\ ( -. A = C /\ -. C = B ) ) <-> ( ( A C_ C /\ -. A = C ) /\ ( C C_ B /\ -. C = B ) ) ) |
|
| 4 | ioran | |- ( -. ( C = A \/ C = B ) <-> ( -. C = A /\ -. C = B ) ) |
|
| 5 | eqcom | |- ( C = A <-> A = C ) |
|
| 6 | 5 | notbii | |- ( -. C = A <-> -. A = C ) |
| 7 | 6 | anbi1i | |- ( ( -. C = A /\ -. C = B ) <-> ( -. A = C /\ -. C = B ) ) |
| 8 | 4 7 | bitri | |- ( -. ( C = A \/ C = B ) <-> ( -. A = C /\ -. C = B ) ) |
| 9 | 8 | anbi2i | |- ( ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) <-> ( ( A C_ C /\ C C_ B ) /\ ( -. A = C /\ -. C = B ) ) ) |
| 10 | dfpss2 | |- ( A C. C <-> ( A C_ C /\ -. A = C ) ) |
|
| 11 | dfpss2 | |- ( C C. B <-> ( C C_ B /\ -. C = B ) ) |
|
| 12 | 10 11 | anbi12i | |- ( ( A C. C /\ C C. B ) <-> ( ( A C_ C /\ -. A = C ) /\ ( C C_ B /\ -. C = B ) ) ) |
| 13 | 3 9 12 | 3bitr4i | |- ( ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) <-> ( A C. C /\ C C. B ) ) |
| 14 | 13 | notbii | |- ( -. ( ( A C_ C /\ C C_ B ) /\ -. ( C = A \/ C = B ) ) <-> -. ( A C. C /\ C C. B ) ) |
| 15 | 2 14 | bitr2i | |- ( -. ( A C. C /\ C C. B ) <-> ( ( A C_ C /\ C C_ B ) -> ( C = A \/ C = B ) ) ) |
| 16 | 1 15 | imbitrdi | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A |