This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing B covers A . Definition of covers in Kalmbach p. 15. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvbr2 | |- ( ( A e. CH /\ B e. CH ) -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvbr | |- ( ( A e. CH /\ B e. CH ) -> ( A |
|
| 2 | iman | |- ( ( ( A C. x /\ x C_ B ) -> x = B ) <-> -. ( ( A C. x /\ x C_ B ) /\ -. x = B ) ) |
|
| 3 | anass | |- ( ( ( A C. x /\ x C_ B ) /\ -. x = B ) <-> ( A C. x /\ ( x C_ B /\ -. x = B ) ) ) |
|
| 4 | dfpss2 | |- ( x C. B <-> ( x C_ B /\ -. x = B ) ) |
|
| 5 | 4 | anbi2i | |- ( ( A C. x /\ x C. B ) <-> ( A C. x /\ ( x C_ B /\ -. x = B ) ) ) |
| 6 | 3 5 | bitr4i | |- ( ( ( A C. x /\ x C_ B ) /\ -. x = B ) <-> ( A C. x /\ x C. B ) ) |
| 7 | 2 6 | xchbinx | |- ( ( ( A C. x /\ x C_ B ) -> x = B ) <-> -. ( A C. x /\ x C. B ) ) |
| 8 | 7 | ralbii | |- ( A. x e. CH ( ( A C. x /\ x C_ B ) -> x = B ) <-> A. x e. CH -. ( A C. x /\ x C. B ) ) |
| 9 | ralnex | |- ( A. x e. CH -. ( A C. x /\ x C. B ) <-> -. E. x e. CH ( A C. x /\ x C. B ) ) |
|
| 10 | 8 9 | bitri | |- ( A. x e. CH ( ( A C. x /\ x C_ B ) -> x = B ) <-> -. E. x e. CH ( A C. x /\ x C. B ) ) |
| 11 | 10 | anbi2i | |- ( ( A C. B /\ A. x e. CH ( ( A C. x /\ x C_ B ) -> x = B ) ) <-> ( A C. B /\ -. E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 12 | 1 11 | bitr4di | |- ( ( A e. CH /\ B e. CH ) -> ( A |