This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwsublen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) = ( 𝑁 − 0 ) ) | |
| 2 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 3 | 2 | subid1d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 0 ) = 𝑁 ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 0 ) = 𝑁 ) |
| 5 | 1 4 | sylan9eq | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) = 𝑁 ) |
| 6 | 5 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → 𝑁 = ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) |
| 7 | 6 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | 7 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 9 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 11 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 12 | elnnne0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) ) | |
| 13 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 14 | 12 13 | sylbir | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 15 | 14 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
| 16 | 11 15 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
| 18 | 17 | impcom | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 19 | modeqmodmin | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) | |
| 20 | 10 18 19 | syl2an2 | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 22 | cshwmodn | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 23 | 22 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 24 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → 𝑊 ∈ Word 𝑉 ) | |
| 25 | 11 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 26 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) | |
| 27 | 25 26 | sylan2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
| 28 | 27 | ancoms | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) |
| 29 | 24 28 | jca | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) ) |
| 31 | cshwmodn | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ∈ ℤ ) → ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift ( ( 𝑁 − ( ♯ ‘ 𝑊 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 33 | 21 23 32 | 3eqtr4d | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≠ 0 ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) |
| 34 | 33 | ex | ⊢ ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 35 | 8 34 | pm2.61ine | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑁 − ( ♯ ‘ 𝑊 ) ) ) ) |