This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwsublen | |- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( ( # ` W ) = 0 -> ( N - ( # ` W ) ) = ( N - 0 ) ) |
|
| 2 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 3 | 2 | subid1d | |- ( N e. ZZ -> ( N - 0 ) = N ) |
| 4 | 3 | adantl | |- ( ( W e. Word V /\ N e. ZZ ) -> ( N - 0 ) = N ) |
| 5 | 1 4 | sylan9eq | |- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N - ( # ` W ) ) = N ) |
| 6 | 5 | eqcomd | |- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> N = ( N - ( # ` W ) ) ) |
| 7 | 6 | oveq2d | |- ( ( ( # ` W ) = 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |
| 8 | 7 | ex | |- ( ( # ` W ) = 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) |
| 9 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 10 | 9 | adantl | |- ( ( W e. Word V /\ N e. ZZ ) -> N e. RR ) |
| 11 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 12 | elnnne0 | |- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) |
|
| 13 | nnrp | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
|
| 14 | 12 13 | sylbir | |- ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( # ` W ) e. RR+ ) |
| 15 | 14 | ex | |- ( ( # ` W ) e. NN0 -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
| 16 | 11 15 | syl | |- ( W e. Word V -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
| 17 | 16 | adantr | |- ( ( W e. Word V /\ N e. ZZ ) -> ( ( # ` W ) =/= 0 -> ( # ` W ) e. RR+ ) ) |
| 18 | 17 | impcom | |- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( # ` W ) e. RR+ ) |
| 19 | modeqmodmin | |- ( ( N e. RR /\ ( # ` W ) e. RR+ ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) |
|
| 20 | 10 18 19 | syl2an2 | |- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( N mod ( # ` W ) ) = ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) |
| 21 | 20 | oveq2d | |- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N mod ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
| 22 | cshwmodn | |- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
|
| 23 | 22 | adantl | |- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N mod ( # ` W ) ) ) ) |
| 24 | simpl | |- ( ( W e. Word V /\ N e. ZZ ) -> W e. Word V ) |
|
| 25 | 11 | nn0zd | |- ( W e. Word V -> ( # ` W ) e. ZZ ) |
| 26 | zsubcl | |- ( ( N e. ZZ /\ ( # ` W ) e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) |
|
| 27 | 25 26 | sylan2 | |- ( ( N e. ZZ /\ W e. Word V ) -> ( N - ( # ` W ) ) e. ZZ ) |
| 28 | 27 | ancoms | |- ( ( W e. Word V /\ N e. ZZ ) -> ( N - ( # ` W ) ) e. ZZ ) |
| 29 | 24 28 | jca | |- ( ( W e. Word V /\ N e. ZZ ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) |
| 30 | 29 | adantl | |- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) ) |
| 31 | cshwmodn | |- ( ( W e. Word V /\ ( N - ( # ` W ) ) e. ZZ ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift ( N - ( # ` W ) ) ) = ( W cyclShift ( ( N - ( # ` W ) ) mod ( # ` W ) ) ) ) |
| 33 | 21 23 32 | 3eqtr4d | |- ( ( ( # ` W ) =/= 0 /\ ( W e. Word V /\ N e. ZZ ) ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |
| 34 | 33 | ex | |- ( ( # ` W ) =/= 0 -> ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) ) |
| 35 | 8 34 | pm2.61ine | |- ( ( W e. Word V /\ N e. ZZ ) -> ( W cyclShift N ) = ( W cyclShift ( N - ( # ` W ) ) ) ) |