This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modeqmodmin | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) = ( ( 𝐴 − 𝑀 ) mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modid0 | ⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 mod 𝑀 ) = 0 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑀 mod 𝑀 ) = 0 ) |
| 3 | modge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝑀 ) ) | |
| 4 | 2 3 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑀 mod 𝑀 ) ≤ ( 𝐴 mod 𝑀 ) ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 6 | rpre | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
| 8 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) | |
| 9 | modsubdir | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝑀 mod 𝑀 ) ≤ ( 𝐴 mod 𝑀 ) ↔ ( ( 𝐴 − 𝑀 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) ) | |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝑀 mod 𝑀 ) ≤ ( 𝐴 mod 𝑀 ) ↔ ( ( 𝐴 − 𝑀 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) ) |
| 11 | 4 10 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − 𝑀 ) mod 𝑀 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) |
| 12 | 2 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 = ( 𝑀 mod 𝑀 ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) − 0 ) = ( ( 𝐴 mod 𝑀 ) − ( 𝑀 mod 𝑀 ) ) ) |
| 14 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) | |
| 15 | 14 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 16 | 15 | subid1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) − 0 ) = ( 𝐴 mod 𝑀 ) ) |
| 17 | 11 13 16 | 3eqtr2rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) = ( ( 𝐴 − 𝑀 ) mod 𝑀 ) ) |