This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018) (Revised by AV, 20-May-2018) (Revised by AV, 26-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwn | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 | ⊢ ( ∅ cyclShift ( ♯ ‘ 𝑊 ) ) = ∅ | |
| 2 | oveq1 | ⊢ ( ∅ = 𝑊 → ( ∅ cyclShift ( ♯ ‘ 𝑊 ) ) = ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) ) | |
| 3 | id | ⊢ ( ∅ = 𝑊 → ∅ = 𝑊 ) | |
| 4 | 1 2 3 | 3eqtr3a | ⊢ ( ∅ = 𝑊 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| 5 | 4 | a1d | ⊢ ( ∅ = 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) ) |
| 6 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 7 | 6 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 8 | cshwmodn | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = ( 𝑊 cyclShift ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 9 | 7 8 | mpdan | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = ( 𝑊 cyclShift ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( ∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = ( 𝑊 cyclShift ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 11 | necom | ⊢ ( ∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅ ) | |
| 12 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 13 | 11 12 | sylan2b | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 14 | 13 | nnrpd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 15 | 14 | ancoms | ⊢ ( ( ∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 16 | modid0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) | |
| 17 | 15 16 | syl | ⊢ ( ( ∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 18 | 17 | oveq2d | ⊢ ( ( ∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 cyclShift ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 cyclShift 0 ) ) |
| 19 | cshw0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) | |
| 20 | 19 | adantl | ⊢ ( ( ∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| 21 | 10 18 20 | 3eqtrd | ⊢ ( ( ∅ ≠ 𝑊 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| 22 | 21 | ex | ⊢ ( ∅ ≠ 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) ) |
| 23 | 5 22 | pm2.61ine | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |