This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018) (Proof shortened by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmodid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( 𝑀 + 𝐴 ) mod 𝑀 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 2 | 1 | mullidd | ⊢ ( 𝑀 ∈ ℕ → ( 1 · 𝑀 ) = 𝑀 ) |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( 1 · 𝑀 ) = 𝑀 ) |
| 4 | 3 | eqcomd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 𝑀 = ( 1 · 𝑀 ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( 𝑀 + 𝐴 ) = ( ( 1 · 𝑀 ) + 𝐴 ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( 𝑀 + 𝐴 ) mod 𝑀 ) = ( ( ( 1 · 𝑀 ) + 𝐴 ) mod 𝑀 ) ) |
| 7 | 1zzd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 1 ∈ ℤ ) | |
| 8 | nnrp | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 𝑀 ∈ ℝ+ ) |
| 10 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 11 | 10 | rexrd | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ* ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ℝ* ) |
| 13 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 0 ≤ 𝐴 ) |
| 15 | simp3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 𝐴 < 𝑀 ) | |
| 16 | 0xr | ⊢ 0 ∈ ℝ* | |
| 17 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 18 | 17 | rexrd | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ* ) |
| 19 | 18 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 𝑀 ∈ ℝ* ) |
| 20 | elico1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) | |
| 21 | 16 19 20 | sylancr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) |
| 22 | 12 14 15 21 | mpbir3and | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ( 0 [,) 𝑀 ) ) |
| 23 | muladdmodid | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ ( 0 [,) 𝑀 ) ) → ( ( ( 1 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) | |
| 24 | 7 9 22 23 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( ( 1 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) |
| 25 | 6 24 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀 ) → ( ( 𝑀 + 𝐴 ) mod 𝑀 ) = 𝐴 ) |