This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshf1 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | |
| 2 | iswrdi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 → 𝐹 ∈ Word 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → 𝐹 ∈ Word 𝐴 ) |
| 4 | cshwf | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
| 7 | feq1 | ⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ↔ ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ↔ ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) ) |
| 9 | 6 8 | mpbird | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
| 10 | dff13 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 11 | fveq1 | ⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 ‘ 𝑖 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 ‘ 𝑖 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑖 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) ) |
| 14 | cshwidxmod | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 15 | 14 | 3expia | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 17 | 16 | com12 | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 19 | 18 | impcom | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 20 | 13 19 | eqtrd | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 21 | fveq1 | ⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) ) | |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) ) |
| 24 | cshwidxmod | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 25 | 24 | 3expia | ⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 26 | 25 | 3adant1 | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 27 | 26 | adantld | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 29 | 23 28 | eqtrd | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 30 | 20 29 | eqeq12d | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 31 | 30 | adantlr | ⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 32 | elfzo0 | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝐹 ) ) ) | |
| 33 | nn0z | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℤ ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → 𝑖 ∈ ℤ ) |
| 35 | 34 | adantl | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑖 ∈ ℤ ) |
| 36 | simpl | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑆 ∈ ℤ ) | |
| 37 | 35 36 | zaddcld | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( 𝑖 + 𝑆 ) ∈ ℤ ) |
| 38 | simpr | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 40 | 37 39 | jca | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 41 | 40 | ex | ⊢ ( 𝑆 ∈ ℤ → ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 43 | 42 | com12 | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 44 | 43 | 3adant3 | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝐹 ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 45 | 32 44 | sylbi | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 47 | 46 | impcom | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 48 | zmodfzo | ⊢ ( ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 50 | elfzo0 | ⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑗 < ( ♯ ‘ 𝐹 ) ) ) | |
| 51 | nn0z | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℤ ) | |
| 52 | 51 | adantr | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → 𝑗 ∈ ℤ ) |
| 53 | 52 | adantl | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑗 ∈ ℤ ) |
| 54 | simpl | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑆 ∈ ℤ ) | |
| 55 | 53 54 | zaddcld | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
| 56 | simpr | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) | |
| 57 | 56 | adantl | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 58 | 55 57 | jca | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 59 | 58 | expcom | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( 𝑆 ∈ ℤ → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 60 | 59 | 3adant3 | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑗 < ( ♯ ‘ 𝐹 ) ) → ( 𝑆 ∈ ℤ → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 61 | 50 60 | sylbi | ⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑆 ∈ ℤ → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 62 | 61 | com12 | ⊢ ( 𝑆 ∈ ℤ → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 64 | 63 | adantld | ⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 65 | 64 | imp | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 66 | zmodfzo | ⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 68 | fveqeq2 | ⊢ ( 𝑥 = ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 69 | eqeq1 | ⊢ ( 𝑥 = ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( 𝑥 = 𝑦 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ) ) | |
| 70 | 68 69 | imbi12d | ⊢ ( 𝑥 = ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ) ) ) |
| 71 | fveq2 | ⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 72 | 71 | eqeq2d | ⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 73 | eqeq2 | ⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 74 | 72 73 | imbi12d | ⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ) ↔ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 75 | 70 74 | rspc2v | ⊢ ( ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 76 | 49 67 75 | syl2anc | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 77 | simpr | ⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 78 | addmodlteq | ⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 = 𝑗 ) ) | |
| 79 | 78 | 3expa | ⊢ ( ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 = 𝑗 ) ) |
| 80 | 79 | ancoms | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 = 𝑗 ) ) |
| 81 | 80 | bicomd | ⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 = 𝑗 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 82 | 81 | 3ad2antl3 | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 = 𝑗 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 83 | 82 | adantr | ⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 = 𝑗 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 84 | 77 83 | sylibrd | ⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) |
| 85 | 84 | ex | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) ) |
| 86 | 76 85 | syld | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) ) |
| 87 | 86 | impancom | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) ) |
| 88 | 87 | imp | ⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) |
| 89 | 31 88 | sylbid | ⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 90 | 89 | ralrimivva | ⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 91 | 90 | 3exp1 | ⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
| 92 | 91 | com14 | ⊢ ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
| 93 | 92 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
| 94 | 10 93 | sylbi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
| 95 | 94 | 3imp1 | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 96 | 9 95 | jca | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
| 97 | 96 | 3exp1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) ) |
| 98 | 3 97 | mpd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
| 99 | 98 | 3imp | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
| 100 | dff13 | ⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) | |
| 101 | 99 100 | sylibr | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |