This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnpcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) + 𝐵 ) = ( 𝐴 − 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 3 | addsub | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) = ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) + 𝐵 ) ) | |
| 4 | 3 | eqcomd | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) + 𝐵 ) = ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) ) |
| 5 | 2 4 | syld3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) + 𝐵 ) = ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) ) |
| 6 | npcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + 𝐵 ) = 𝐴 ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + 𝐵 ) = 𝐴 ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) + 𝐵 ) − 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) + 𝐵 ) = ( 𝐴 − 𝐶 ) ) |