This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxm | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | elfzelz | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
| 4 | ubmelfzo | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 7 | 1 3 5 6 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | elfz1b | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 9 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 10 | nncn | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℂ ) | |
| 11 | 9 10 | anim12ci | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 13 | 8 12 | sylbi | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 14 | npcan | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) = ( ♯ ‘ 𝑊 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) = ( ♯ ‘ 𝑊 ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 18 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 19 | modid0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) | |
| 20 | 18 19 | syl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 22 | 8 21 | sylbi | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 23 | 22 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 24 | 17 23 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) ) |
| 26 | 7 25 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 ‘ 0 ) ) |