This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting two words (of the same length) results in the same word, cyclically shifting one of the words by the difference of the numbers of shifts results in the other word. (Contributed by AV, 21-Apr-2018) (Revised by AV, 6-Jun-2018) (Revised by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshweqdif2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → 𝑈 ∈ Word 𝑉 ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑈 ∈ Word 𝑉 ) |
| 3 | zsubcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| 6 | simpr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) |
| 8 | 2 5 7 | 3jca | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 10 | 3cshw | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑈 ) − 𝑀 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑈 ) − 𝑀 ) ) ) |
| 12 | simpl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ) | |
| 13 | 12 | ancomd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ) |
| 15 | simpr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) | |
| 16 | 15 | ancomd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 18 | simpr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) | |
| 19 | 18 | eqcomd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift 𝑀 ) = ( 𝑊 cyclShift 𝑁 ) ) |
| 20 | cshwleneq | ⊢ ( ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑈 cyclShift 𝑀 ) = ( 𝑊 cyclShift 𝑁 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) | |
| 21 | 14 17 19 20 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( ♯ ‘ 𝑈 ) − 𝑀 ) = ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑈 ) − 𝑀 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
| 24 | 11 23 | eqtrd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
| 25 | 19 | oveq1d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( 𝑀 − 𝑁 ) ) ) |
| 26 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → 𝑊 ∈ Word 𝑉 ) | |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑊 ∈ Word 𝑉 ) |
| 28 | simpl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 30 | 27 29 5 | 3jca | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) ) |
| 32 | 2cshw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + ( 𝑀 − 𝑁 ) ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + ( 𝑀 − 𝑁 ) ) ) ) |
| 34 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 35 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 36 | 34 35 | anim12i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
| 39 | pncan3 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 + ( 𝑀 − 𝑁 ) ) = 𝑀 ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑁 + ( 𝑀 − 𝑁 ) ) = 𝑀 ) |
| 41 | 40 | oveq2d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift ( 𝑁 + ( 𝑀 − 𝑁 ) ) ) = ( 𝑊 cyclShift 𝑀 ) ) |
| 42 | 25 33 41 | 3eqtrd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift 𝑀 ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
| 44 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 45 | 44 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 47 | zsubcl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) | |
| 48 | 46 6 47 | syl2an | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) |
| 49 | 27 7 48 | 3jca | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) ) |
| 51 | 2cshw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) ) |
| 53 | 24 43 52 | 3eqtrd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) ) |
| 54 | 44 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 55 | 54 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 56 | 35 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 57 | 55 56 | anim12i | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
| 58 | 57 | ancomd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑀 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) ) |
| 60 | pncan3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) → ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 62 | 61 | oveq2d | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) = ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) ) |
| 63 | cshwn | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) | |
| 64 | 27 63 | syl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| 65 | 64 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
| 66 | 53 62 65 | 3eqtrd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) |
| 67 | 66 | ex | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) |