This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting two words (of the same length) results in the same word, cyclically shifting one of the words by the difference of the numbers of shifts results in the other word. (Contributed by AV, 21-Apr-2018) (Revised by AV, 6-Jun-2018) (Revised by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshweqdif2 | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( W cyclShift N ) = ( U cyclShift M ) -> ( U cyclShift ( M - N ) ) = W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( W e. Word V /\ U e. Word V ) -> U e. Word V ) |
|
| 2 | 1 | adantr | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> U e. Word V ) |
| 3 | zsubcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
|
| 4 | 3 | ancoms | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( M - N ) e. ZZ ) |
| 5 | 4 | adantl | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M - N ) e. ZZ ) |
| 6 | simpr | |- ( ( N e. ZZ /\ M e. ZZ ) -> M e. ZZ ) |
|
| 7 | 6 | adantl | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> M e. ZZ ) |
| 8 | 2 5 7 | 3jca | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( U e. Word V /\ ( M - N ) e. ZZ /\ M e. ZZ ) ) |
| 9 | 8 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U e. Word V /\ ( M - N ) e. ZZ /\ M e. ZZ ) ) |
| 10 | 3cshw | |- ( ( U e. Word V /\ ( M - N ) e. ZZ /\ M e. ZZ ) -> ( U cyclShift ( M - N ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` U ) - M ) ) ) |
|
| 11 | 9 10 | syl | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` U ) - M ) ) ) |
| 12 | simpl | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W e. Word V /\ U e. Word V ) ) |
|
| 13 | 12 | ancomd | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( U e. Word V /\ W e. Word V ) ) |
| 14 | 13 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U e. Word V /\ W e. Word V ) ) |
| 15 | simpr | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( N e. ZZ /\ M e. ZZ ) ) |
|
| 16 | 15 | ancomd | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 17 | 16 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 18 | simpr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift N ) = ( U cyclShift M ) ) |
|
| 19 | 18 | eqcomd | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift M ) = ( W cyclShift N ) ) |
| 20 | cshwleneq | |- ( ( ( U e. Word V /\ W e. Word V ) /\ ( M e. ZZ /\ N e. ZZ ) /\ ( U cyclShift M ) = ( W cyclShift N ) ) -> ( # ` U ) = ( # ` W ) ) |
|
| 21 | 14 17 19 20 | syl3anc | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( # ` U ) = ( # ` W ) ) |
| 22 | 21 | oveq1d | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( # ` U ) - M ) = ( ( # ` W ) - M ) ) |
| 23 | 22 | oveq2d | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` U ) - M ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` W ) - M ) ) ) |
| 24 | 11 23 | eqtrd | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` W ) - M ) ) ) |
| 25 | 19 | oveq1d | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( U cyclShift M ) cyclShift ( M - N ) ) = ( ( W cyclShift N ) cyclShift ( M - N ) ) ) |
| 26 | simpl | |- ( ( W e. Word V /\ U e. Word V ) -> W e. Word V ) |
|
| 27 | 26 | adantr | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> W e. Word V ) |
| 28 | simpl | |- ( ( N e. ZZ /\ M e. ZZ ) -> N e. ZZ ) |
|
| 29 | 28 | adantl | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> N e. ZZ ) |
| 30 | 27 29 5 | 3jca | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W e. Word V /\ N e. ZZ /\ ( M - N ) e. ZZ ) ) |
| 31 | 30 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W e. Word V /\ N e. ZZ /\ ( M - N ) e. ZZ ) ) |
| 32 | 2cshw | |- ( ( W e. Word V /\ N e. ZZ /\ ( M - N ) e. ZZ ) -> ( ( W cyclShift N ) cyclShift ( M - N ) ) = ( W cyclShift ( N + ( M - N ) ) ) ) |
|
| 33 | 31 32 | syl | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( W cyclShift N ) cyclShift ( M - N ) ) = ( W cyclShift ( N + ( M - N ) ) ) ) |
| 34 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 35 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 36 | 34 35 | anim12i | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N e. CC /\ M e. CC ) ) |
| 37 | 36 | adantl | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( N e. CC /\ M e. CC ) ) |
| 38 | 37 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( N e. CC /\ M e. CC ) ) |
| 39 | pncan3 | |- ( ( N e. CC /\ M e. CC ) -> ( N + ( M - N ) ) = M ) |
|
| 40 | 38 39 | syl | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( N + ( M - N ) ) = M ) |
| 41 | 40 | oveq2d | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift ( N + ( M - N ) ) ) = ( W cyclShift M ) ) |
| 42 | 25 33 41 | 3eqtrd | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( U cyclShift M ) cyclShift ( M - N ) ) = ( W cyclShift M ) ) |
| 43 | 42 | oveq1d | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( ( U cyclShift M ) cyclShift ( M - N ) ) cyclShift ( ( # ` W ) - M ) ) = ( ( W cyclShift M ) cyclShift ( ( # ` W ) - M ) ) ) |
| 44 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 45 | 44 | nn0zd | |- ( W e. Word V -> ( # ` W ) e. ZZ ) |
| 46 | 45 | adantr | |- ( ( W e. Word V /\ U e. Word V ) -> ( # ` W ) e. ZZ ) |
| 47 | zsubcl | |- ( ( ( # ` W ) e. ZZ /\ M e. ZZ ) -> ( ( # ` W ) - M ) e. ZZ ) |
|
| 48 | 46 6 47 | syl2an | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( # ` W ) - M ) e. ZZ ) |
| 49 | 27 7 48 | 3jca | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W e. Word V /\ M e. ZZ /\ ( ( # ` W ) - M ) e. ZZ ) ) |
| 50 | 49 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W e. Word V /\ M e. ZZ /\ ( ( # ` W ) - M ) e. ZZ ) ) |
| 51 | 2cshw | |- ( ( W e. Word V /\ M e. ZZ /\ ( ( # ` W ) - M ) e. ZZ ) -> ( ( W cyclShift M ) cyclShift ( ( # ` W ) - M ) ) = ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) ) |
|
| 52 | 50 51 | syl | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( ( W cyclShift M ) cyclShift ( ( # ` W ) - M ) ) = ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) ) |
| 53 | 24 43 52 | 3eqtrd | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) ) |
| 54 | 44 | nn0cnd | |- ( W e. Word V -> ( # ` W ) e. CC ) |
| 55 | 54 | adantr | |- ( ( W e. Word V /\ U e. Word V ) -> ( # ` W ) e. CC ) |
| 56 | 35 | adantl | |- ( ( N e. ZZ /\ M e. ZZ ) -> M e. CC ) |
| 57 | 55 56 | anim12i | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( # ` W ) e. CC /\ M e. CC ) ) |
| 58 | 57 | ancomd | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M e. CC /\ ( # ` W ) e. CC ) ) |
| 59 | 58 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( M e. CC /\ ( # ` W ) e. CC ) ) |
| 60 | pncan3 | |- ( ( M e. CC /\ ( # ` W ) e. CC ) -> ( M + ( ( # ` W ) - M ) ) = ( # ` W ) ) |
|
| 61 | 59 60 | syl | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( M + ( ( # ` W ) - M ) ) = ( # ` W ) ) |
| 62 | 61 | oveq2d | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift ( M + ( ( # ` W ) - M ) ) ) = ( W cyclShift ( # ` W ) ) ) |
| 63 | cshwn | |- ( W e. Word V -> ( W cyclShift ( # ` W ) ) = W ) |
|
| 64 | 27 63 | syl | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( W cyclShift ( # ` W ) ) = W ) |
| 65 | 64 | adantr | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( W cyclShift ( # ` W ) ) = W ) |
| 66 | 53 62 65 | 3eqtrd | |- ( ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) /\ ( W cyclShift N ) = ( U cyclShift M ) ) -> ( U cyclShift ( M - N ) ) = W ) |
| 67 | 66 | ex | |- ( ( ( W e. Word V /\ U e. Word V ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( ( W cyclShift N ) = ( U cyclShift M ) -> ( U cyclShift ( M - N ) ) = W ) ) |