This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word three times results in a once cyclically shifted word under certain circumstances. (Contributed by AV, 6-Jun-2018) (Revised by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3cshw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cshwid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = 𝑊 ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = 𝑊 ) |
| 3 | 2 | eqcomd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑊 = ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
| 4 | 3 | oveq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) cyclShift 𝑁 ) ) |
| 5 | cshwcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
| 7 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 8 | 7 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 9 | zsubcl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) | |
| 10 | 8 9 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) |
| 12 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 13 | 2cshwcom | ⊢ ( ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) cyclShift 𝑁 ) = ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) | |
| 14 | 6 11 12 13 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) cyclShift 𝑁 ) = ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
| 15 | 4 14 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |