This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If cyclically shifting a word by two positions results in the same word, cyclically shifting the word by the difference of these two positions results in the original word itself. (Contributed by AV, 21-Apr-2018) (Revised by AV, 7-Jun-2018) (Revised by AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshweqdifid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉 ) | |
| 2 | 1 | ancli | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ) |
| 3 | 2 | anim1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ) |
| 5 | cshweqdif2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) |