This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshinj | |- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> ( G = ( F cyclShift S ) -> Fun `' G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdf | |- ( F e. Word A -> F : ( 0 ..^ ( # ` F ) ) --> A ) |
|
| 2 | df-f1 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( F : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' F ) ) |
|
| 3 | 2 | biimpri | |- ( ( F : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' F ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 4 | 1 3 | sylan | |- ( ( F e. Word A /\ Fun `' F ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 5 | 4 | 3adant3 | |- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 6 | 5 | adantr | |- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 7 | simpl3 | |- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> S e. ZZ ) |
|
| 8 | simpr | |- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G = ( F cyclShift S ) ) |
|
| 9 | cshf1 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
|
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| 11 | 10 | ex | |- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> ( G = ( F cyclShift S ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) ) |
| 12 | df-f1 | |- ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' G ) ) |
|
| 13 | 12 | simprbi | |- ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A -> Fun `' G ) |
| 14 | 11 13 | syl6 | |- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> ( G = ( F cyclShift S ) -> Fun `' G ) ) |