This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclically shifted word is a function from a half-open range of integers of the same length as the word as domain to the set of symbols for the word. (Contributed by AV, 12-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwf | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cshwcl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝐴 ) | |
| 2 | wrdf | ⊢ ( ( 𝑊 cyclShift 𝑁 ) ∈ Word 𝐴 → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ) |
| 5 | cshwlen | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | 6 | feq2d | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) ⟶ 𝐴 ↔ ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) ) |
| 8 | 4 7 | mpbid | ⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |