This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbwrdg | |- ( S e. V -> [_ S / x ]_ Word x = Word S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word | |- Word x = { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } |
|
| 2 | 1 | csbeq2i | |- [_ S / x ]_ Word x = [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } |
| 3 | sbcrex | |- ( [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x <-> E. l e. NN0 [. S / x ]. w : ( 0 ..^ l ) --> x ) |
|
| 4 | sbcfg | |- ( S e. V -> ( [. S / x ]. w : ( 0 ..^ l ) --> x <-> [_ S / x ]_ w : [_ S / x ]_ ( 0 ..^ l ) --> [_ S / x ]_ x ) ) |
|
| 5 | csbconstg | |- ( S e. V -> [_ S / x ]_ w = w ) |
|
| 6 | csbconstg | |- ( S e. V -> [_ S / x ]_ ( 0 ..^ l ) = ( 0 ..^ l ) ) |
|
| 7 | csbvarg | |- ( S e. V -> [_ S / x ]_ x = S ) |
|
| 8 | 5 6 7 | feq123d | |- ( S e. V -> ( [_ S / x ]_ w : [_ S / x ]_ ( 0 ..^ l ) --> [_ S / x ]_ x <-> w : ( 0 ..^ l ) --> S ) ) |
| 9 | 4 8 | bitrd | |- ( S e. V -> ( [. S / x ]. w : ( 0 ..^ l ) --> x <-> w : ( 0 ..^ l ) --> S ) ) |
| 10 | 9 | rexbidv | |- ( S e. V -> ( E. l e. NN0 [. S / x ]. w : ( 0 ..^ l ) --> x <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) |
| 11 | 3 10 | bitrid | |- ( S e. V -> ( [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) |
| 12 | 11 | abbidv | |- ( S e. V -> { w | [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x } = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } ) |
| 13 | csbab | |- [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } = { w | [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x } |
|
| 14 | df-word | |- Word S = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } |
|
| 15 | 12 13 14 | 3eqtr4g | |- ( S e. V -> [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } = Word S ) |
| 16 | 2 15 | eqtrid | |- ( S e. V -> [_ S / x ]_ Word x = Word S ) |