This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Proof shortened by AV, 13-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdnval | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) } | |
| 2 | ovexd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ..^ 𝑁 ) ∈ V ) | |
| 3 | elmapg | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ ( 0 ..^ 𝑁 ) ∈ V ) → ( 𝑤 ∈ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ↔ 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑤 ∈ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ↔ 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) |
| 5 | iswrdi | ⊢ ( 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 → 𝑤 ∈ Word 𝑉 ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) → 𝑤 ∈ Word 𝑉 ) |
| 7 | fnfzo0hash | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) → ( ♯ ‘ 𝑤 ) = 𝑁 ) | |
| 8 | 7 | adantll | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) → ( ♯ ‘ 𝑤 ) = 𝑁 ) |
| 9 | 6 8 | jca | ⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) |
| 10 | 9 | ex | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) ) |
| 11 | wrdf | ⊢ ( 𝑤 ∈ Word 𝑉 → 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑉 ) | |
| 12 | oveq2 | ⊢ ( ( ♯ ‘ 𝑤 ) = 𝑁 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ 𝑁 ) ) | |
| 13 | 12 | feq2d | ⊢ ( ( ♯ ‘ 𝑤 ) = 𝑁 → ( 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑉 ↔ 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) |
| 14 | 11 13 | syl5ibcom | ⊢ ( 𝑤 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑤 ) = 𝑁 → 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) ) |
| 15 | 14 | imp | ⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) → 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) |
| 16 | 10 15 | impbid1 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑤 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) ) |
| 17 | 4 16 | bitrd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑤 ∈ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) ) |
| 18 | 17 | eqabdv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) } ) |
| 19 | 1 18 | eqtr4id | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) |