This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012) (Revised by NM, 22-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbuni | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab | ⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } = { 𝑧 ∣ [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } | |
| 2 | sbcex2 | ⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 3 | sbcan | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) | |
| 4 | sbcg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 5 | 4 | anbi1d | ⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) ) |
| 6 | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 7 | 6 | anbi2i | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
| 8 | 5 7 | bitrdi | ⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
| 9 | 3 8 | bitrid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
| 10 | 9 | exbidv | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
| 11 | 2 10 | bitrid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
| 12 | 11 | abbidv | ⊢ ( 𝐴 ∈ V → { 𝑧 ∣ [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) } ) |
| 13 | 1 12 | eqtrid | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) } ) |
| 14 | df-uni | ⊢ ∪ 𝐵 = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } | |
| 15 | 14 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } |
| 16 | df-uni | ⊢ ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) } | |
| 17 | 13 15 16 | 3eqtr4g | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 18 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∅ ) | |
| 19 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
| 20 | 19 | unieqd | ⊢ ( ¬ 𝐴 ∈ V → ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∪ ∅ ) |
| 21 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 22 | 20 21 | eqtr2di | ⊢ ( ¬ 𝐴 ∈ V → ∅ = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 23 | 18 22 | eqtrd | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 24 | 17 23 | pm2.61i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |