This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of TakeutiZaring p. 16. For example, U. { { 1 , 3 } , { 1 , 8 } } = { 1 , 3 , 8 } ( ex-uni ). This is similar to the union of two classes df-un . (Contributed by NM, 23-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-uni | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | cuni | ⊢ ∪ 𝐴 |
| 2 | vx | ⊢ 𝑥 | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 2 | cv | ⊢ 𝑥 |
| 5 | 3 | cv | ⊢ 𝑦 |
| 6 | 4 5 | wcel | ⊢ 𝑥 ∈ 𝑦 |
| 7 | 5 0 | wcel | ⊢ 𝑦 ∈ 𝐴 |
| 8 | 6 7 | wa | ⊢ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) |
| 9 | 8 3 | wex | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) |
| 10 | 9 2 | cab | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } |
| 11 | 1 10 | wceq | ⊢ ∪ 𝐴 = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) } |