This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in Apostol p. 361. (Contributed by NM, 29-Apr-2005) (Proof shortened by Jeff Hankins, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crrecz.1 | |- A e. RR |
|
| crrecz.2 | |- B e. RR |
||
| Assertion | crreczi | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crrecz.1 | |- A e. RR |
|
| 2 | crrecz.2 | |- B e. RR |
|
| 3 | 1 | recni | |- A e. CC |
| 4 | 3 | sqcli | |- ( A ^ 2 ) e. CC |
| 5 | ax-icn | |- _i e. CC |
|
| 6 | 2 | recni | |- B e. CC |
| 7 | 5 6 | mulcli | |- ( _i x. B ) e. CC |
| 8 | 7 | sqcli | |- ( ( _i x. B ) ^ 2 ) e. CC |
| 9 | 4 8 | negsubi | |- ( ( A ^ 2 ) + -u ( ( _i x. B ) ^ 2 ) ) = ( ( A ^ 2 ) - ( ( _i x. B ) ^ 2 ) ) |
| 10 | 5 6 | sqmuli | |- ( ( _i x. B ) ^ 2 ) = ( ( _i ^ 2 ) x. ( B ^ 2 ) ) |
| 11 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 12 | 11 | oveq1i | |- ( ( _i ^ 2 ) x. ( B ^ 2 ) ) = ( -u 1 x. ( B ^ 2 ) ) |
| 13 | ax-1cn | |- 1 e. CC |
|
| 14 | 6 | sqcli | |- ( B ^ 2 ) e. CC |
| 15 | 13 14 | mulneg1i | |- ( -u 1 x. ( B ^ 2 ) ) = -u ( 1 x. ( B ^ 2 ) ) |
| 16 | 10 12 15 | 3eqtri | |- ( ( _i x. B ) ^ 2 ) = -u ( 1 x. ( B ^ 2 ) ) |
| 17 | 16 | negeqi | |- -u ( ( _i x. B ) ^ 2 ) = -u -u ( 1 x. ( B ^ 2 ) ) |
| 18 | 13 14 | mulcli | |- ( 1 x. ( B ^ 2 ) ) e. CC |
| 19 | 18 | negnegi | |- -u -u ( 1 x. ( B ^ 2 ) ) = ( 1 x. ( B ^ 2 ) ) |
| 20 | 14 | mullidi | |- ( 1 x. ( B ^ 2 ) ) = ( B ^ 2 ) |
| 21 | 17 19 20 | 3eqtri | |- -u ( ( _i x. B ) ^ 2 ) = ( B ^ 2 ) |
| 22 | 21 | oveq2i | |- ( ( A ^ 2 ) + -u ( ( _i x. B ) ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 23 | 3 7 | subsqi | |- ( ( A ^ 2 ) - ( ( _i x. B ) ^ 2 ) ) = ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) |
| 24 | 9 22 23 | 3eqtr3ri | |- ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 25 | 24 | oveq1i | |- ( ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 26 | neorian | |- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
|
| 27 | sumsqeq0 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) ) |
|
| 28 | 1 2 27 | mp2an | |- ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) |
| 29 | 28 | necon3bbii | |- ( -. ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 ) |
| 30 | 26 29 | bitri | |- ( ( A =/= 0 \/ B =/= 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 ) |
| 31 | 3 7 | addcli | |- ( A + ( _i x. B ) ) e. CC |
| 32 | 3 7 | subcli | |- ( A - ( _i x. B ) ) e. CC |
| 33 | 4 14 | addcli | |- ( ( A ^ 2 ) + ( B ^ 2 ) ) e. CC |
| 34 | 31 32 33 | divasszi | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 -> ( ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) ) |
| 35 | 30 34 | sylbi | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) ) |
| 36 | divid | |- ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) e. CC /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = 1 ) |
|
| 37 | 33 36 | mpan | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = 1 ) |
| 38 | 30 37 | sylbi | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = 1 ) |
| 39 | 25 35 38 | 3eqtr3a | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) |
| 40 | 32 33 | divclzi | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) =/= 0 -> ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC ) |
| 41 | 30 40 | sylbi | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC ) |
| 42 | 31 | a1i | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( A + ( _i x. B ) ) e. CC ) |
| 43 | crne0 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A =/= 0 \/ B =/= 0 ) <-> ( A + ( _i x. B ) ) =/= 0 ) ) |
|
| 44 | 1 2 43 | mp2an | |- ( ( A =/= 0 \/ B =/= 0 ) <-> ( A + ( _i x. B ) ) =/= 0 ) |
| 45 | 44 | biimpi | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( A + ( _i x. B ) ) =/= 0 ) |
| 46 | divmul | |- ( ( 1 e. CC /\ ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC /\ ( ( A + ( _i x. B ) ) e. CC /\ ( A + ( _i x. B ) ) =/= 0 ) ) -> ( ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) <-> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) ) |
|
| 47 | 13 46 | mp3an1 | |- ( ( ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) e. CC /\ ( ( A + ( _i x. B ) ) e. CC /\ ( A + ( _i x. B ) ) =/= 0 ) ) -> ( ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) <-> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) ) |
| 48 | 41 42 45 47 | syl12anc | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) <-> ( ( A + ( _i x. B ) ) x. ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) = 1 ) ) |
| 49 | 39 48 | mpbird | |- ( ( A =/= 0 \/ B =/= 0 ) -> ( 1 / ( A + ( _i x. B ) ) ) = ( ( A - ( _i x. B ) ) / ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |