This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real representation of complex numbers is nonzero iff one of its terms is nonzero. (Contributed by NM, 29-Apr-2005) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neorian | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | 2 | mul01i | ⊢ ( i · 0 ) = 0 |
| 4 | 3 | oveq2i | ⊢ ( 0 + ( i · 0 ) ) = ( 0 + 0 ) |
| 5 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 6 | 4 5 | eqtri | ⊢ ( 0 + ( i · 0 ) ) = 0 |
| 7 | 6 | eqeq2i | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) = ( 0 + ( i · 0 ) ) ↔ ( 𝐴 + ( i · 𝐵 ) ) = 0 ) |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | cru | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) = ( 0 + ( i · 0 ) ) ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) | |
| 10 | 8 8 9 | mpanr12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) = ( 0 + ( i · 0 ) ) ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 11 | 7 10 | bitr3id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 12 | 11 | necon3abid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 13 | 1 12 | bitr4id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) ) |