This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cplem2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | cplem2 | ⊢ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplem2.1 | ⊢ 𝐴 ∈ V | |
| 2 | scottex | ⊢ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ∈ V | |
| 3 | 1 2 | iunex | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ∈ V |
| 4 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } | |
| 5 | 4 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } |
| 6 | ineq2 | ⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( 𝐵 ∩ 𝑦 ) = ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ) | |
| 7 | 6 | neeq1d | ⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ ↔ ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) ↔ ( 𝐵 ≠ ∅ → ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) ) |
| 9 | 5 8 | ralbid | ⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) ) |
| 10 | eqid | ⊢ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } | |
| 11 | eqid | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } | |
| 12 | 10 11 | cplem1 | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) |
| 13 | 3 9 12 | ceqsexv2d | ⊢ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) |