This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of Jech p. 72, is a set. (Contributed by NM, 13-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | scottex | ⊢ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | eleq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ V ) |
| 4 | rabexg | ⊢ ( 𝐴 ∈ V → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 = ∅ → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
| 6 | neq0 | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) | |
| 7 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 9 | 7 8 | nfrabw | ⊢ Ⅎ 𝑦 { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
| 10 | 9 | nfel1 | ⊢ Ⅎ 𝑦 { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
| 11 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ( 𝑦 ∈ 𝐴 → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) | |
| 12 | 11 | com12 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 14 | 13 | ss2rabdv | ⊢ ( 𝑦 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ) |
| 15 | rankon | ⊢ ( rank ‘ 𝑦 ) ∈ On | |
| 16 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝑤 ) ) | |
| 17 | 16 | sseq1d | ⊢ ( 𝑥 = 𝑤 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 18 | 17 | elrab | ⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ↔ ( 𝑤 ∈ 𝐴 ∧ ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 19 | 18 | simprbi | ⊢ ( 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } → ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) |
| 20 | 19 | rgen | ⊢ ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) |
| 21 | sseq2 | ⊢ ( 𝑧 = ( rank ‘ 𝑦 ) → ( ( rank ‘ 𝑤 ) ⊆ 𝑧 ↔ ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) | |
| 22 | 21 | ralbidv | ⊢ ( 𝑧 = ( rank ‘ 𝑦 ) → ( ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 ↔ ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
| 23 | 22 | rspcev | ⊢ ( ( ( rank ‘ 𝑦 ) ∈ On ∧ ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ ( rank ‘ 𝑦 ) ) → ∃ 𝑧 ∈ On ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 ) |
| 24 | 15 20 23 | mp2an | ⊢ ∃ 𝑧 ∈ On ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 |
| 25 | bndrank | ⊢ ( ∃ 𝑧 ∈ On ∀ 𝑤 ∈ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ( rank ‘ 𝑤 ) ⊆ 𝑧 → { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) | |
| 26 | 24 25 | ax-mp | ⊢ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |
| 27 | 26 | ssex | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
| 28 | 14 27 | syl | ⊢ ( 𝑦 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
| 29 | 10 28 | exlimi | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
| 30 | 6 29 | sylbi | ⊢ ( ¬ 𝐴 = ∅ → { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V ) |
| 31 | 5 30 | pm2.61i | ⊢ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ∈ V |