This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cplem1.1 | ⊢ 𝐶 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } | |
| cplem1.2 | ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 | ||
| Assertion | cplem1 | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplem1.1 | ⊢ 𝐶 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } | |
| 2 | cplem1.2 | ⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 | |
| 3 | scott0 | ⊢ ( 𝐵 = ∅ ↔ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ ) | |
| 4 | 1 | eqeq1i | ⊢ ( 𝐶 = ∅ ↔ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ ) |
| 5 | 3 4 | bitr4i | ⊢ ( 𝐵 = ∅ ↔ 𝐶 = ∅ ) |
| 6 | 5 | necon3bii | ⊢ ( 𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅ ) |
| 7 | n0 | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) | |
| 8 | 6 7 | bitri | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) |
| 9 | 1 | ssrab3 | ⊢ 𝐶 ⊆ 𝐵 |
| 10 | 9 | sseli | ⊢ ( 𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵 ) |
| 11 | 10 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵 ) ) |
| 12 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ) | |
| 13 | 12 2 | sseqtrrdi | ⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ⊆ 𝐷 ) |
| 14 | 13 | sseld | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐷 ) ) |
| 15 | 11 14 | jcad | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → ( 𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) ) |
| 16 | inelcm | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) | |
| 17 | 15 16 | syl6 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 18 | 17 | exlimdv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑤 𝑤 ∈ 𝐶 → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 19 | 8 18 | biimtrid | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 20 | 19 | rgen | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) |