This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cplem1.1 | |- C = { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } |
|
| cplem1.2 | |- D = U_ x e. A C |
||
| Assertion | cplem1 | |- A. x e. A ( B =/= (/) -> ( B i^i D ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplem1.1 | |- C = { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } |
|
| 2 | cplem1.2 | |- D = U_ x e. A C |
|
| 3 | scott0 | |- ( B = (/) <-> { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
|
| 4 | 1 | eqeq1i | |- ( C = (/) <-> { y e. B | A. z e. B ( rank ` y ) C_ ( rank ` z ) } = (/) ) |
| 5 | 3 4 | bitr4i | |- ( B = (/) <-> C = (/) ) |
| 6 | 5 | necon3bii | |- ( B =/= (/) <-> C =/= (/) ) |
| 7 | n0 | |- ( C =/= (/) <-> E. w w e. C ) |
|
| 8 | 6 7 | bitri | |- ( B =/= (/) <-> E. w w e. C ) |
| 9 | 1 | ssrab3 | |- C C_ B |
| 10 | 9 | sseli | |- ( w e. C -> w e. B ) |
| 11 | 10 | a1i | |- ( x e. A -> ( w e. C -> w e. B ) ) |
| 12 | ssiun2 | |- ( x e. A -> C C_ U_ x e. A C ) |
|
| 13 | 12 2 | sseqtrrdi | |- ( x e. A -> C C_ D ) |
| 14 | 13 | sseld | |- ( x e. A -> ( w e. C -> w e. D ) ) |
| 15 | 11 14 | jcad | |- ( x e. A -> ( w e. C -> ( w e. B /\ w e. D ) ) ) |
| 16 | inelcm | |- ( ( w e. B /\ w e. D ) -> ( B i^i D ) =/= (/) ) |
|
| 17 | 15 16 | syl6 | |- ( x e. A -> ( w e. C -> ( B i^i D ) =/= (/) ) ) |
| 18 | 17 | exlimdv | |- ( x e. A -> ( E. w w e. C -> ( B i^i D ) =/= (/) ) ) |
| 19 | 8 18 | biimtrid | |- ( x e. A -> ( B =/= (/) -> ( B i^i D ) =/= (/) ) ) |
| 20 | 19 | rgen | |- A. x e. A ( B =/= (/) -> ( B i^i D ) =/= (/) ) |