This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Collection Principle cp . (Contributed by NM, 17-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cplem1.1 | ||
| cplem1.2 | |||
| Assertion | cplem1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplem1.1 | ||
| 2 | cplem1.2 | ||
| 3 | scott0 | ||
| 4 | 1 | eqeq1i | |
| 5 | 3 4 | bitr4i | |
| 6 | 5 | necon3bii | |
| 7 | n0 | ||
| 8 | 6 7 | bitri | |
| 9 | 1 | ssrab3 | |
| 10 | 9 | sseli | |
| 11 | 10 | a1i | |
| 12 | ssiun2 | ||
| 13 | 12 2 | sseqtrrdi | |
| 14 | 13 | sseld | |
| 15 | 11 14 | jcad | |
| 16 | inelcm | ||
| 17 | 15 16 | syl6 | |
| 18 | 17 | exlimdv | |
| 19 | 8 18 | biimtrid | |
| 20 | 19 | rgen |