This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjugate of an inner product in a subcomplex pre-Hilbert space. Complex version of ipcj . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | cphipcj | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | 4 | clmcj | ⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ∗ = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 | 7 | fveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) ) |
| 9 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 10 | eqid | ⊢ ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) = ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) | |
| 11 | 4 1 2 10 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| 12 | 9 11 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |