This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cottrcl | |- ( R o. t++ R ) C_ t++ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( R |` _V ) |
|
| 2 | ssttrcl | |- ( Rel ( R |` _V ) -> ( R |` _V ) C_ t++ ( R |` _V ) ) |
|
| 3 | 1 2 | ax-mp | |- ( R |` _V ) C_ t++ ( R |` _V ) |
| 4 | coss1 | |- ( ( R |` _V ) C_ t++ ( R |` _V ) -> ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) |
| 6 | ttrcltr | |- ( t++ ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) |
|
| 7 | 5 6 | sstri | |- ( ( R |` _V ) o. t++ ( R |` _V ) ) C_ t++ ( R |` _V ) |
| 8 | ssv | |- ran t++ ( R |` _V ) C_ _V |
|
| 9 | cores | |- ( ran t++ ( R |` _V ) C_ _V -> ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ ( R |` _V ) ) |
| 11 | ttrclresv | |- t++ ( R |` _V ) = t++ R |
|
| 12 | 11 | coeq2i | |- ( R o. t++ ( R |` _V ) ) = ( R o. t++ R ) |
| 13 | 10 12 | eqtri | |- ( ( R |` _V ) o. t++ ( R |` _V ) ) = ( R o. t++ R ) |
| 14 | 7 13 11 | 3sstr3i | |- ( R o. t++ R ) C_ t++ R |