This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss0 | ⊢ ≀ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss2 | ⊢ ≀ ∅ = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) } | |
| 2 | ec0 | ⊢ [ 𝑥 ] ∅ = ∅ | |
| 3 | 2 | eleq2i | ⊢ ( 𝑦 ∈ [ 𝑥 ] ∅ ↔ 𝑦 ∈ ∅ ) |
| 4 | 2 | eleq2i | ⊢ ( 𝑧 ∈ [ 𝑥 ] ∅ ↔ 𝑧 ∈ ∅ ) |
| 5 | 3 4 | anbi12i | ⊢ ( ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) ↔ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) ↔ ∃ 𝑥 ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) |
| 7 | 19.9v | ⊢ ( ∃ 𝑥 ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ↔ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) ↔ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) |
| 9 | 8 | opabbii | ⊢ { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) } |
| 10 | prnzg | ⊢ ( 𝑦 ∈ V → { 𝑦 , 𝑧 } ≠ ∅ ) | |
| 11 | 10 | elv | ⊢ { 𝑦 , 𝑧 } ≠ ∅ |
| 12 | ss0b | ⊢ ( { 𝑦 , 𝑧 } ⊆ ∅ ↔ { 𝑦 , 𝑧 } = ∅ ) | |
| 13 | 11 12 | nemtbir | ⊢ ¬ { 𝑦 , 𝑧 } ⊆ ∅ |
| 14 | prssg | ⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ↔ { 𝑦 , 𝑧 } ⊆ ∅ ) ) | |
| 15 | 14 | el2v | ⊢ ( ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ↔ { 𝑦 , 𝑧 } ⊆ ∅ ) |
| 16 | 13 15 | mtbir | ⊢ ¬ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) |
| 17 | 16 | opabf | ⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) } = ∅ |
| 18 | 1 9 17 | 3eqtri | ⊢ ≀ ∅ = ∅ |