This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of cosets by R : x and y are cosets by R iff there exists a set u such that both x and y are are elements of the R -coset of u (see also the comment of dfec2 ). R is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcoss2 | ⊢ ≀ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝑦 ∈ [ 𝑢 ] 𝑅 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | ⊢ ≀ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } | |
| 2 | elecALTV | ⊢ ( ( 𝑢 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝑥 ) ) | |
| 3 | 2 | el2v | ⊢ ( 𝑥 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝑥 ) |
| 4 | elecALTV | ⊢ ( ( 𝑢 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑦 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝑦 ) ) | |
| 5 | 4 | el2v | ⊢ ( 𝑦 ∈ [ 𝑢 ] 𝑅 ↔ 𝑢 𝑅 𝑦 ) |
| 6 | 3 5 | anbi12i | ⊢ ( ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝑦 ∈ [ 𝑢 ] 𝑅 ) ↔ ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑢 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝑦 ∈ [ 𝑢 ] 𝑅 ) ↔ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) |
| 8 | 7 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝑦 ∈ [ 𝑢 ] 𝑅 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) } |
| 9 | 1 8 | eqtr4i | ⊢ ≀ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝑦 ∈ [ 𝑢 ] 𝑅 ) } |