This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss0 | |- ,~ (/) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss2 | |- ,~ (/) = { <. y , z >. | E. x ( y e. [ x ] (/) /\ z e. [ x ] (/) ) } |
|
| 2 | ec0 | |- [ x ] (/) = (/) |
|
| 3 | 2 | eleq2i | |- ( y e. [ x ] (/) <-> y e. (/) ) |
| 4 | 2 | eleq2i | |- ( z e. [ x ] (/) <-> z e. (/) ) |
| 5 | 3 4 | anbi12i | |- ( ( y e. [ x ] (/) /\ z e. [ x ] (/) ) <-> ( y e. (/) /\ z e. (/) ) ) |
| 6 | 5 | exbii | |- ( E. x ( y e. [ x ] (/) /\ z e. [ x ] (/) ) <-> E. x ( y e. (/) /\ z e. (/) ) ) |
| 7 | 19.9v | |- ( E. x ( y e. (/) /\ z e. (/) ) <-> ( y e. (/) /\ z e. (/) ) ) |
|
| 8 | 6 7 | bitri | |- ( E. x ( y e. [ x ] (/) /\ z e. [ x ] (/) ) <-> ( y e. (/) /\ z e. (/) ) ) |
| 9 | 8 | opabbii | |- { <. y , z >. | E. x ( y e. [ x ] (/) /\ z e. [ x ] (/) ) } = { <. y , z >. | ( y e. (/) /\ z e. (/) ) } |
| 10 | prnzg | |- ( y e. _V -> { y , z } =/= (/) ) |
|
| 11 | 10 | elv | |- { y , z } =/= (/) |
| 12 | ss0b | |- ( { y , z } C_ (/) <-> { y , z } = (/) ) |
|
| 13 | 11 12 | nemtbir | |- -. { y , z } C_ (/) |
| 14 | prssg | |- ( ( y e. _V /\ z e. _V ) -> ( ( y e. (/) /\ z e. (/) ) <-> { y , z } C_ (/) ) ) |
|
| 15 | 14 | el2v | |- ( ( y e. (/) /\ z e. (/) ) <-> { y , z } C_ (/) ) |
| 16 | 13 15 | mtbir | |- -. ( y e. (/) /\ z e. (/) ) |
| 17 | 16 | opabf | |- { <. y , z >. | ( y e. (/) /\ z e. (/) ) } = (/) |
| 18 | 1 9 17 | 3eqtri | |- ,~ (/) = (/) |