This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019) (Proof shortened by Thierry Arnoux, 18-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opabf.1 | ⊢ ¬ 𝜑 | |
| Assertion | opabf | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabf.1 | ⊢ ¬ 𝜑 | |
| 2 | 1 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 |
| 3 | opab0 | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) | |
| 4 | 2 3 | mpbir | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = ∅ |