This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossid | ⊢ ≀ I = I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equvinv | ⊢ ( 𝑦 = 𝑧 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑧 ) ) | |
| 2 | ideqg | ⊢ ( 𝑦 ∈ V → ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 4 | ideqg | ⊢ ( 𝑧 ∈ V → ( 𝑥 I 𝑧 ↔ 𝑥 = 𝑧 ) ) | |
| 5 | 4 | elv | ⊢ ( 𝑥 I 𝑧 ↔ 𝑥 = 𝑧 ) |
| 6 | 3 5 | anbi12i | ⊢ ( ( 𝑥 I 𝑦 ∧ 𝑥 I 𝑧 ) ↔ ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑧 ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 I 𝑦 ∧ 𝑥 I 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑧 ) ) |
| 8 | 1 7 | bitr4i | ⊢ ( 𝑦 = 𝑧 ↔ ∃ 𝑥 ( 𝑥 I 𝑦 ∧ 𝑥 I 𝑧 ) ) |
| 9 | 8 | opabbii | ⊢ { 〈 𝑦 , 𝑧 〉 ∣ 𝑦 = 𝑧 } = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 I 𝑦 ∧ 𝑥 I 𝑧 ) } |
| 10 | df-id | ⊢ I = { 〈 𝑦 , 𝑧 〉 ∣ 𝑦 = 𝑧 } | |
| 11 | df-coss | ⊢ ≀ I = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑥 I 𝑦 ∧ 𝑥 I 𝑧 ) } | |
| 12 | 9 10 11 | 3eqtr4ri | ⊢ ≀ I = I |