This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | connsubclo.1 | |- X = U. J |
|
| connsubclo.3 | |- ( ph -> A C_ X ) |
||
| connsubclo.4 | |- ( ph -> ( J |`t A ) e. Conn ) |
||
| connsubclo.5 | |- ( ph -> B e. J ) |
||
| connsubclo.6 | |- ( ph -> ( B i^i A ) =/= (/) ) |
||
| connsubclo.7 | |- ( ph -> B e. ( Clsd ` J ) ) |
||
| Assertion | connsubclo | |- ( ph -> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connsubclo.1 | |- X = U. J |
|
| 2 | connsubclo.3 | |- ( ph -> A C_ X ) |
|
| 3 | connsubclo.4 | |- ( ph -> ( J |`t A ) e. Conn ) |
|
| 4 | connsubclo.5 | |- ( ph -> B e. J ) |
|
| 5 | connsubclo.6 | |- ( ph -> ( B i^i A ) =/= (/) ) |
|
| 6 | connsubclo.7 | |- ( ph -> B e. ( Clsd ` J ) ) |
|
| 7 | eqid | |- U. ( J |`t A ) = U. ( J |`t A ) |
|
| 8 | cldrcl | |- ( B e. ( Clsd ` J ) -> J e. Top ) |
|
| 9 | 6 8 | syl | |- ( ph -> J e. Top ) |
| 10 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 11 | 9 10 | syl | |- ( ph -> X e. J ) |
| 12 | 11 2 | ssexd | |- ( ph -> A e. _V ) |
| 13 | elrestr | |- ( ( J e. Top /\ A e. _V /\ B e. J ) -> ( B i^i A ) e. ( J |`t A ) ) |
|
| 14 | 9 12 4 13 | syl3anc | |- ( ph -> ( B i^i A ) e. ( J |`t A ) ) |
| 15 | eqid | |- ( B i^i A ) = ( B i^i A ) |
|
| 16 | ineq1 | |- ( x = B -> ( x i^i A ) = ( B i^i A ) ) |
|
| 17 | 16 | rspceeqv | |- ( ( B e. ( Clsd ` J ) /\ ( B i^i A ) = ( B i^i A ) ) -> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) |
| 18 | 6 15 17 | sylancl | |- ( ph -> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) |
| 19 | 1 | restcld | |- ( ( J e. Top /\ A C_ X ) -> ( ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) <-> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) ) |
| 20 | 9 2 19 | syl2anc | |- ( ph -> ( ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) <-> E. x e. ( Clsd ` J ) ( B i^i A ) = ( x i^i A ) ) ) |
| 21 | 18 20 | mpbird | |- ( ph -> ( B i^i A ) e. ( Clsd ` ( J |`t A ) ) ) |
| 22 | 7 3 14 5 21 | connclo | |- ( ph -> ( B i^i A ) = U. ( J |`t A ) ) |
| 23 | 1 | restuni | |- ( ( J e. Top /\ A C_ X ) -> A = U. ( J |`t A ) ) |
| 24 | 9 2 23 | syl2anc | |- ( ph -> A = U. ( J |`t A ) ) |
| 25 | 22 24 | eqtr4d | |- ( ph -> ( B i^i A ) = A ) |
| 26 | sseqin2 | |- ( A C_ B <-> ( B i^i A ) = A ) |
|
| 27 | 25 26 | sylibr | |- ( ph -> A C_ B ) |