This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | connima.x | |- X = U. J |
|
| connima.f | |- ( ph -> F e. ( J Cn K ) ) |
||
| connima.a | |- ( ph -> A C_ X ) |
||
| connima.c | |- ( ph -> ( J |`t A ) e. Conn ) |
||
| Assertion | connima | |- ( ph -> ( K |`t ( F " A ) ) e. Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connima.x | |- X = U. J |
|
| 2 | connima.f | |- ( ph -> F e. ( J Cn K ) ) |
|
| 3 | connima.a | |- ( ph -> A C_ X ) |
|
| 4 | connima.c | |- ( ph -> ( J |`t A ) e. Conn ) |
|
| 5 | eqid | |- U. K = U. K |
|
| 6 | 1 5 | cnf | |- ( F e. ( J Cn K ) -> F : X --> U. K ) |
| 7 | 2 6 | syl | |- ( ph -> F : X --> U. K ) |
| 8 | 7 | ffund | |- ( ph -> Fun F ) |
| 9 | 7 | fdmd | |- ( ph -> dom F = X ) |
| 10 | 3 9 | sseqtrrd | |- ( ph -> A C_ dom F ) |
| 11 | fores | |- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ph -> ( F |` A ) : A -onto-> ( F " A ) ) |
| 13 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 14 | 2 13 | syl | |- ( ph -> K e. Top ) |
| 15 | imassrn | |- ( F " A ) C_ ran F |
|
| 16 | 7 | frnd | |- ( ph -> ran F C_ U. K ) |
| 17 | 15 16 | sstrid | |- ( ph -> ( F " A ) C_ U. K ) |
| 18 | 5 | restuni | |- ( ( K e. Top /\ ( F " A ) C_ U. K ) -> ( F " A ) = U. ( K |`t ( F " A ) ) ) |
| 19 | 14 17 18 | syl2anc | |- ( ph -> ( F " A ) = U. ( K |`t ( F " A ) ) ) |
| 20 | foeq3 | |- ( ( F " A ) = U. ( K |`t ( F " A ) ) -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) ) |
| 22 | 12 21 | mpbid | |- ( ph -> ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) ) |
| 23 | 1 | cnrest | |- ( ( F e. ( J Cn K ) /\ A C_ X ) -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |
| 24 | 2 3 23 | syl2anc | |- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |
| 25 | toptopon2 | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
|
| 26 | 14 25 | sylib | |- ( ph -> K e. ( TopOn ` U. K ) ) |
| 27 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 28 | eqimss2 | |- ( ( F " A ) = ran ( F |` A ) -> ran ( F |` A ) C_ ( F " A ) ) |
|
| 29 | 27 28 | mp1i | |- ( ph -> ran ( F |` A ) C_ ( F " A ) ) |
| 30 | cnrest2 | |- ( ( K e. ( TopOn ` U. K ) /\ ran ( F |` A ) C_ ( F " A ) /\ ( F " A ) C_ U. K ) -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) ) |
|
| 31 | 26 29 17 30 | syl3anc | |- ( ph -> ( ( F |` A ) e. ( ( J |`t A ) Cn K ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) ) |
| 32 | 24 31 | mpbid | |- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) |
| 33 | eqid | |- U. ( K |`t ( F " A ) ) = U. ( K |`t ( F " A ) ) |
|
| 34 | 33 | cnconn | |- ( ( ( J |`t A ) e. Conn /\ ( F |` A ) : A -onto-> U. ( K |`t ( F " A ) ) /\ ( F |` A ) e. ( ( J |`t A ) Cn ( K |`t ( F " A ) ) ) ) -> ( K |`t ( F " A ) ) e. Conn ) |
| 35 | 4 22 32 34 | syl3anc | |- ( ph -> ( K |`t ( F " A ) ) e. Conn ) |